中国科技术语

• 探讨与争鸣 • 上一篇    下一篇

国标《热分析术语》亟待修订和补充

刘振海1;安立佳1,杨腊虎2   

  1. 1中国科学院长春应用化学研究所; 2 中国药品生物制品检定所
  • 出版日期:2004-12-15 发布日期:2004-12-15

National Standard GB6425-86 Ought to Be Updated

Liu Zhenhai,An Lijia and Yang Lahu   

  • Online:2004-12-15 Published:2004-12-15

摘要: 热分析是表征各类物质特性的重要手段之一,是仪器分析的一个分支,广泛用于材料科学等各学科领域。现行的术语标准是23年前在我国著名物理化学(热化学)家胡日恒先生主持下制订的,它对我国热分析术语的统一起了积极的作用,近20余年,热分析技术与方法及其应用有了很大的进步,国际上,对热分析的基础术语有了新的定义,更加关注对一些新方法、新应用给出相应的术语和科学定义。笔者试图对此提出一些建议,以适应这种已变化了的形势。前文[1]已详述热分析术语的演变,本文从分析这其中的变革入手,从而建议对标准进行修订,并提出若干需增补的条款。
据悉,日本对包括热分析术语在内的《热分析通则》(General rules for thermal analysis,JISK 0129-1994)也正在修订中。
国标GB 6425-86《热分析术语》[2]将热分析定义为“在程序温度下,测量物质的物理性质与温度的关系的一类技术”。它是依据国际热分析协会(ICTA)名词委员会发表的第四方案制订的[3]。该定义概括性很强,只要将其中的“物理性质”以质量、温差、功率差或模量与阻尼代替,便可演绎出热重法、差热分析、差示扫描量热法以及动态热机械分析等各种热分析方法。从与文献[4]以及ISO[5]对具体热分析方法的对比分析可见,现行国标的热分析定义,未能指明实验条件如“气氛”,并将测量的对象泛指为“物质”。按上述分析笔者建议将热分析定义为:“在程序控温和一定气氛下,测量试样的某种物理性质与温度或时间关系的一类技术。”除将实验对象具体称“试样”和指明气氛条件外,尚包括在恒温下观察试样的物理性质随时间的变化。
ISO对诸多热分析方法定义的一个明显特点是充分考虑了目前的现状。比如,考虑到两种类型(热流型与功率补偿型)DSC并存的现实,ISO将DSC定义为“试样和参比物在程序控温下,测量输给试样和参比物的热流量(或功率差)与温度或时间关系的技术。”而国标GB 6425-86《热分析术语》只是定义了其中的一种类型,即“在程序温度下,测量输入到物质和参比物的率功差与温度关系的技术。”基于上述建议的总定义,DSC可建议定义为:“在程序控温和一定气氛下,测量输给试样和参比物的热流量(或功率差)与温度或时间关系的技术。”再比如,ICTA热重法的称谓是Thermogravimetry,而不提倡使用analysis(分析)一词;类似地,便有Dynamic mechanometry[动态(热)机械法]之称[6]。而ISO却分别将这两种方法称作Thermogravimetric analysis(Thermogravimetry)和Dynamic mechanic analysis(动态热机械分析),并将带有“分析”一词的名称在“热重法”中列为首选。
20世纪60年代初期,在差热分析(Differential thermal analysis)的基础上,提出了一种新的方法——差示扫描量热法(Differential scanning calorimetry),这一方法成功地应用于物质的多重转变、纯度、比热容等的测量。该法应用之广,在高分子科学领域几乎成为热分析方法的代名词。到20世纪90年代初,在DSC基础上,又出现了一种崭新的热分析方法——温度调制式差示扫描量热法(Temperaturemodulated DSC),在慢速升降温(有利于提高分辨率)的基础上叠加一个快速升降温的调制信号(有利于灵敏度的提高),有效地兼顾了分辨率与灵敏度;并可将测得的总热效应区分为可逆成分(如玻璃化转变、结晶、熔融等)与不可逆成分(如热焓松弛、挥发、固化、氧化、裂解等)。但对这一方法国际学术组织(如ICTAC,ISO等迄今尚未给出定义,著名的日本热分析家T.Hatakeyama博士在专著[7]中对TMD-SC给出了如下定义:“TMDSC是由DSC演变的一种方法,该法是对温度程序施加正弦扰动,形成热流量和温度信号的非线性调制,从而可将总热流信号分解成可逆和不可逆热流成分。”而对DDSC,ODSC,ADSC等其他几种类似的方法,只是对温度程序施加诸如锯齿波或方波等形式的扰动。
如将DSC用于测量聚合物共混体系的比热容Cp,当组分量少(如质量分数小于3%或5%时),从积分型的Cp-T曲线无法判断体系的相行为,是相容还是不相容体系。但如将Cp对温度微商,做成(dCp/dT)-T曲线,则会表现出与各组分相应的峰值,分辨得十分清晰。目前对此种曲线并无命名,由热重曲线(Thermogravimetric curve)与微商热重曲线(Derivative Thermogravimetric curve)类推,笔者建议称(dCp/dT)-T曲线为微商热容曲线(Derivative heat capacity curve)。
此外,在DTA,DSC等热分析实验中,是将试样(Sample)和参比物(Reference material)同时置于支持器(Holder)的对称位置上,英文将这两者(试样和参比物)一道称作Specimens,在国标GB6425-86的条款4.3称其为“样品”,实践表明,“样品”的这种特定涵义很难被广泛认同和采纳,笔者建议称Specimens为“样品-参比物”;热分析测得的结果(记录)称曲线(Curve),而不称热谱(Thermogram);按热力学的习惯,体系的正向是:吸热、对外做功、内能提高,因而热分析的DSC曲线是吸热向上,但热流型DSC也称定量DTA(quantitative DTA),故按长期以来DTA曲线表达的习惯,也有以曲线向上表示放热的。将DSC曲线的纵坐标表示为DSC/mW是不恰当的,因为DSC是方法的代号,而非物理量[8]
凡此种种,均应属国标GB6425-86《热分析术语》修订时考虑和明确之列,以求对热分析术语的使用更加科学、规范。