中国科技术语 ›› 2021, Vol. 23 ›› Issue (1): 60-70.doi: 10.3969/j.issn.1673-8578.2021.01.009
蒋甜1(), 许哲平1(
), 陈学娟1, 卢庆陶2, 杨辉霞2, 朱学军1
收稿日期:
2020-12-15
出版日期:
2021-01-25
发布日期:
2021-01-11
作者简介:
基金资助:
JIANG Tian1(), XU Zheping1(
), CHEN Xuejuan1, LU Qingtao2, YANG Huixia2, ZHU Xuejun1
Received:
2020-12-15
Online:
2021-01-25
Published:
2021-01-11
摘要:
科技术语是科技论文的基本要素和重要特征,光合作用研究论文中存在大量的科技术语。基于数据驱动的科技术语分析能够对学科领域的动态发展和演变起到较好的揭示和印证作用。文章以VOSviewer软件为主要分析工具,对Web of Science数据库中光合作用领域近三年的高被引论文和热点论文中的科技术语进行计量分析和可视化呈现。分析比较的结果表明,近年来光合作用的研究热点集中在“自然光合作用的机理探究”“光合作用与环境变化”“人工光合的应用和发展”三个方向,“光催化剂”成为这几年光合作用领域研究的前沿。
中图分类号:
蒋甜, 许哲平, 陈学娟, 卢庆陶, 杨辉霞, 朱学军. 近年来光合作用领域的前沿和热点研究——基于WOS高被引论文的科技术语分析[J]. 中国科技术语, 2021, 23(1): 60-70.
JIANG Tian, XU Zheping, CHEN Xuejuan, LU Qingtao, YANG Huixia, ZHU Xuejun. Frontier and Hot Researches in the Field of Photosynthesis: Analysis of Scientific Terms Based on WOS Highly Cited Papers[J]. China Terminology, 2021, 23(1): 60-70.
序号 | 关键词 | 翻译 | 词频 |
---|---|---|---|
1 | photosynthesis | 光合作用 | 1337 |
2 | phylogeny | 系统发生 | 947 |
3 | gene expression | 基因表达 | 926 |
4 | drought | 干旱 | 911 |
5 | abiotic stress | 非生物胁迫 | 847 |
6 | climate change | 气候改变 | 786 |
7 | genetic diversity | 遗传多样性 | 741 |
8 | new species | 新物种 | 724 |
9 | oxidative stress | 氧化胁迫 | 641 |
10 | transcriptome | 转录组 | 633 |
11 | salt stress | 盐胁迫 | 630 |
12 | yield | 产量 | 573 |
13 | drought stress | 干旱胁迫 | 560 |
14 | reactive oxygen species | 活性氧 | 557 |
15 | salinity | 盐度 | 548 |
16 | antioxidant | 抗氧化剂 | 516 |
17 | germination | 种子萌发 | 513 |
18 | auxin | 生长素 | 503 |
19 | biodiversity | 生物多样性 | 497 |
20 | RNA-seq | RNA测序 | 495 |
序号 | 关键词 | 翻译 | 词频 |
---|---|---|---|
1 | photosynthesis | 光合作用 | 1337 |
2 | phylogeny | 系统发生 | 947 |
3 | gene expression | 基因表达 | 926 |
4 | drought | 干旱 | 911 |
5 | abiotic stress | 非生物胁迫 | 847 |
6 | climate change | 气候改变 | 786 |
7 | genetic diversity | 遗传多样性 | 741 |
8 | new species | 新物种 | 724 |
9 | oxidative stress | 氧化胁迫 | 641 |
10 | transcriptome | 转录组 | 633 |
11 | salt stress | 盐胁迫 | 630 |
12 | yield | 产量 | 573 |
13 | drought stress | 干旱胁迫 | 560 |
14 | reactive oxygen species | 活性氧 | 557 |
15 | salinity | 盐度 | 548 |
16 | antioxidant | 抗氧化剂 | 516 |
17 | germination | 种子萌发 | 513 |
18 | auxin | 生长素 | 503 |
19 | biodiversity | 生物多样性 | 497 |
20 | RNA-seq | RNA测序 | 495 |
序号 | 标题 | 被引频次 | 年份 | 发表期刊 |
---|---|---|---|---|
1 | Earth-abundant Catalysts for Electrochemical and Photoelectrochemical Water Splitting | 1105 | 2017 | NATURE REVIEWS CHEMISTRY |
2 | A Review on g-C3N4-based Photocatalysts | 1007 | 2017 | APPLIED SURFACE SCIENCE |
3 | Alkali-assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution | 558 | 2017 | ADVANCED MATERIALS |
4 | Surface Modification and Enhanced Photocatalytic CO2 Reduction Performance of TiO2: A Review | 551 | 2017 | APPLIED SURFACE SCIENCE |
5 | Metal-Free Photocatalyst for H2 Evolution in Visible to Near-Infrared Region: Black Phosphorus/Graphitic Carbon Nitride | 437 | 2017 | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY |
6 | Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity | 426 | 2017 | SMALL |
7 | Photoelectrochemical Devices for Solar Water Splitting-Materials and Challenges | 379 | 2017 | CHEMICAL SOCIETY REVIEWS |
8 | Direct Z-scheme g-C3N4/WO3 Photocatalyst With Atomically Defined Junction for H2 Production | 335 | 2017 | APPLIED CATALYSIS BENVIRONMENTAL |
9 | A Direct Z-scheme g-C3N4/SnS2 Photocatalyst with Superior Visible-light CO2 Reduction Performance | 334 | 2017 | JOURNAL OF CATALYSIS |
10 | Direct Z-scheme Photocatalysts: Principles, Synthesis, and Applications | 307 | 2018 | MATERIALS TODAY |
序号 | 标题 | 被引频次 | 年份 | 发表期刊 |
---|---|---|---|---|
1 | Earth-abundant Catalysts for Electrochemical and Photoelectrochemical Water Splitting | 1105 | 2017 | NATURE REVIEWS CHEMISTRY |
2 | A Review on g-C3N4-based Photocatalysts | 1007 | 2017 | APPLIED SURFACE SCIENCE |
3 | Alkali-assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution | 558 | 2017 | ADVANCED MATERIALS |
4 | Surface Modification and Enhanced Photocatalytic CO2 Reduction Performance of TiO2: A Review | 551 | 2017 | APPLIED SURFACE SCIENCE |
5 | Metal-Free Photocatalyst for H2 Evolution in Visible to Near-Infrared Region: Black Phosphorus/Graphitic Carbon Nitride | 437 | 2017 | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY |
6 | Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity | 426 | 2017 | SMALL |
7 | Photoelectrochemical Devices for Solar Water Splitting-Materials and Challenges | 379 | 2017 | CHEMICAL SOCIETY REVIEWS |
8 | Direct Z-scheme g-C3N4/WO3 Photocatalyst With Atomically Defined Junction for H2 Production | 335 | 2017 | APPLIED CATALYSIS BENVIRONMENTAL |
9 | A Direct Z-scheme g-C3N4/SnS2 Photocatalyst with Superior Visible-light CO2 Reduction Performance | 334 | 2017 | JOURNAL OF CATALYSIS |
10 | Direct Z-scheme Photocatalysts: Principles, Synthesis, and Applications | 307 | 2018 | MATERIALS TODAY |
关键词 | 中文翻译 | 共现 频率 | 关联 强度 |
---|---|---|---|
photosystem-II | 光系统II | 35 | 137 |
gene-expression | 基因表达 | 16 | 70 |
protein | 蛋白 | 13 | 48 |
chloroplast | 叶绿体 | 12 | 50 |
expression | 表达 | 11 | 46 |
gene | 基因 | 11 | 41 |
crystal-structure | 晶体结构 | 10 | 28 |
photoinhibition | 光抑制 | 8 | 52 |
identification | 识别 | 8 | 40 |
C-4 photosynthesis | C-4植物光合作用 | 8 | 31 |
photosynthetic electron-transport | 光合电子传递 | 8 | 24 |
acclimation | 适应环境、气候 | 7 | 42 |
photosystem-I | 光系统I | 7 | 32 |
transport | 转运 | 7 | 24 |
reactive oxygen species | 活性氧 | 6 | 49 |
singlet oxygen | 单线态氧 | 6 | 30 |
cycle | 循环 | 6 | 24 |
energy-transfer | 能量传递 | 6 | 20 |
fluorescence | 荧光 | 6 | 15 |
ascorbate peroxidase | 抗坏血酸过氧化物酶 | 5 | 27 |
flavodiiron proteins | FDP蛋白 | 5 | 24 |
flucuating light | 波动的光 | 5 | 23 |
water-water cycle | 水-水循环 | 5 | 22 |
energy-balance | 能量平衡 | 5 | 22 |
complex | 复合物 | 5 | 18 |
high-light | 高光 | 5 | 18 |
concentrating mechanism | 浓缩机制 | 5 | 18 |
in-vivo | 体内 | 5 | 17 |
dehydrogenase-like complex | 脱氢酶复合物 | 5 | 13 |
light-harvesting complex | 捕光色素复合物 | 5 | 12 |
关键词 | 中文翻译 | 共现 频率 | 关联 强度 |
---|---|---|---|
photosystem-II | 光系统II | 35 | 137 |
gene-expression | 基因表达 | 16 | 70 |
protein | 蛋白 | 13 | 48 |
chloroplast | 叶绿体 | 12 | 50 |
expression | 表达 | 11 | 46 |
gene | 基因 | 11 | 41 |
crystal-structure | 晶体结构 | 10 | 28 |
photoinhibition | 光抑制 | 8 | 52 |
identification | 识别 | 8 | 40 |
C-4 photosynthesis | C-4植物光合作用 | 8 | 31 |
photosynthetic electron-transport | 光合电子传递 | 8 | 24 |
acclimation | 适应环境、气候 | 7 | 42 |
photosystem-I | 光系统I | 7 | 32 |
transport | 转运 | 7 | 24 |
reactive oxygen species | 活性氧 | 6 | 49 |
singlet oxygen | 单线态氧 | 6 | 30 |
cycle | 循环 | 6 | 24 |
energy-transfer | 能量传递 | 6 | 20 |
fluorescence | 荧光 | 6 | 15 |
ascorbate peroxidase | 抗坏血酸过氧化物酶 | 5 | 27 |
flavodiiron proteins | FDP蛋白 | 5 | 24 |
flucuating light | 波动的光 | 5 | 23 |
water-water cycle | 水-水循环 | 5 | 22 |
energy-balance | 能量平衡 | 5 | 22 |
complex | 复合物 | 5 | 18 |
high-light | 高光 | 5 | 18 |
concentrating mechanism | 浓缩机制 | 5 | 18 |
in-vivo | 体内 | 5 | 17 |
dehydrogenase-like complex | 脱氢酶复合物 | 5 | 13 |
light-harvesting complex | 捕光色素复合物 | 5 | 12 |
关键词 | 中文翻译 | 共现 频率 | 关联 强度 |
---|---|---|---|
photosynthesis | 光合作用 | 109 | 487 |
carbon-dioxide | 二氧化碳 | 36 | 175 |
chlorophyll fluorescence | 叶绿素荧光 | 28 | 144 |
stomatal conductance | 气孔导度 | 26 | 140 |
climate change | 气候变化 | 24 | 94 |
water-use efficiency | 水分利用率 | 21 | 101 |
gas-exchange | 气体交换 | 20 | 102 |
gross primary production | 总初级生产力 | 15 | 80 |
drought | 干旱 | 15 | 72 |
temperature | 温度 | 15 | 70 |
light | 光 | 15 | 68 |
mesophyll conductance | 叶肉导度 | 14 | 71 |
leaves | 叶片 | 13 | 57 |
carbon | 碳 | 13 | 55 |
CO2 assimilation | CO2同化 | 12 | 65 |
light use efficiency | 光能利用率 | 11 | 59 |
electron-transport | 电子传递 | 10 | 48 |
photosynthetic capacity | 光合能力 | 10 | 48 |
use efficiency | 利用率 | 9 | 46 |
carbon cycle | 碳循环 | 8 | 47 |
elevated CO2 | 上升的CO2 | 8 | 35 |
climate | 气候 | 8 | 22 |
yield | 产量 | 7 | 39 |
atmospheric CO2 | 大气中CO2 | 7 | 37 |
leaf-area index | 叶面积指数 | 7 | 37 |
transpiration | 蒸腾 | 7 | 36 |
induced chlorophyll fluorescence | 诱导叶绿素荧光 | 7 | 35 |
rubisco | 核酮糖-1,5-二磷酸羧化酶 | 6 | 34 |
eddy covariance | 涡流协方差 | 6 | 33 |
productivity | 产量 | 6 | 33 |
关键词 | 中文翻译 | 共现 频率 | 关联 强度 |
---|---|---|---|
photosynthesis | 光合作用 | 109 | 487 |
carbon-dioxide | 二氧化碳 | 36 | 175 |
chlorophyll fluorescence | 叶绿素荧光 | 28 | 144 |
stomatal conductance | 气孔导度 | 26 | 140 |
climate change | 气候变化 | 24 | 94 |
water-use efficiency | 水分利用率 | 21 | 101 |
gas-exchange | 气体交换 | 20 | 102 |
gross primary production | 总初级生产力 | 15 | 80 |
drought | 干旱 | 15 | 72 |
temperature | 温度 | 15 | 70 |
light | 光 | 15 | 68 |
mesophyll conductance | 叶肉导度 | 14 | 71 |
leaves | 叶片 | 13 | 57 |
carbon | 碳 | 13 | 55 |
CO2 assimilation | CO2同化 | 12 | 65 |
light use efficiency | 光能利用率 | 11 | 59 |
electron-transport | 电子传递 | 10 | 48 |
photosynthetic capacity | 光合能力 | 10 | 48 |
use efficiency | 利用率 | 9 | 46 |
carbon cycle | 碳循环 | 8 | 47 |
elevated CO2 | 上升的CO2 | 8 | 35 |
climate | 气候 | 8 | 22 |
yield | 产量 | 7 | 39 |
atmospheric CO2 | 大气中CO2 | 7 | 37 |
leaf-area index | 叶面积指数 | 7 | 37 |
transpiration | 蒸腾 | 7 | 36 |
induced chlorophyll fluorescence | 诱导叶绿素荧光 | 7 | 35 |
rubisco | 核酮糖-1,5-二磷酸羧化酶 | 6 | 34 |
eddy covariance | 涡流协方差 | 6 | 33 |
productivity | 产量 | 6 | 33 |
关键词 | 中文翻译 | 共现 频率 | 关联 强度 |
---|---|---|---|
growth | 生长 | 38 | 157 |
oxidative stress | 氧化损伤 | 22 | 119 |
abscisic-acid | 脱落酸 | 19 | 99 |
abiotic stress | 非生物胁迫 | 18 | 95 |
antioxidant | 抗氧化剂 | 17 | 107 |
salt stress | 盐胁迫 | 17 | 98 |
hydrogen-peroxide | 过氧化氢 | 16 | 103 |
salinity | 盐度 | 15 | 83 |
water-stress | 水分胁迫 | 15 | 80 |
accumulation | 积累 | 14 | 82 |
toxicity | 毒性 | 13 | 73 |
drought stress | 干旱胁迫 | 12 | 67 |
plant-growth | 植物生长 | 12 | 56 |
cadmium | 镉 | 10 | 65 |
drought tolerance | 抗旱 | 10 | 47 |
superoxide-dismutase | 超氧化物歧化酶 | 8 | 65 |
seed-germination | 种子萌发 | 8 | 46 |
leaf senescence | 叶片衰老 | 8 | 45 |
tolerance | 抗性 | 8 | 40 |
induced oxidative stress | 诱导氧化应激 | 8 | 34 |
melatonin | 褪黑素 | 7 | 48 |
heat stress | 热胁迫 | 7 | 41 |
salicylic-acid | 水杨酸 | 7 | 37 |
water-deficit | 缺水 | 7 | 37 |
nitrogen | 氮 | 7 | 32 |
stress | 胁迫 | 7 | 32 |
osmotic adjustment | 渗透调节 | 7 | 30 |
biosynthesis | 生物合成 | 7 | 30 |
proline | 脯氨酸 | 6 | 32 |
reactive oxygen | 活性氧 | 6 | 31 |
关键词 | 中文翻译 | 共现 频率 | 关联 强度 |
---|---|---|---|
growth | 生长 | 38 | 157 |
oxidative stress | 氧化损伤 | 22 | 119 |
abscisic-acid | 脱落酸 | 19 | 99 |
abiotic stress | 非生物胁迫 | 18 | 95 |
antioxidant | 抗氧化剂 | 17 | 107 |
salt stress | 盐胁迫 | 17 | 98 |
hydrogen-peroxide | 过氧化氢 | 16 | 103 |
salinity | 盐度 | 15 | 83 |
water-stress | 水分胁迫 | 15 | 80 |
accumulation | 积累 | 14 | 82 |
toxicity | 毒性 | 13 | 73 |
drought stress | 干旱胁迫 | 12 | 67 |
plant-growth | 植物生长 | 12 | 56 |
cadmium | 镉 | 10 | 65 |
drought tolerance | 抗旱 | 10 | 47 |
superoxide-dismutase | 超氧化物歧化酶 | 8 | 65 |
seed-germination | 种子萌发 | 8 | 46 |
leaf senescence | 叶片衰老 | 8 | 45 |
tolerance | 抗性 | 8 | 40 |
induced oxidative stress | 诱导氧化应激 | 8 | 34 |
melatonin | 褪黑素 | 7 | 48 |
heat stress | 热胁迫 | 7 | 41 |
salicylic-acid | 水杨酸 | 7 | 37 |
water-deficit | 缺水 | 7 | 37 |
nitrogen | 氮 | 7 | 32 |
stress | 胁迫 | 7 | 32 |
osmotic adjustment | 渗透调节 | 7 | 30 |
biosynthesis | 生物合成 | 7 | 30 |
proline | 脯氨酸 | 6 | 32 |
reactive oxygen | 活性氧 | 6 | 31 |
关键词 | 中文翻译 | 共现 频率 | 关联 强度 |
---|---|---|---|
artifical photosynthesis | 人工光合 | 71 | 320 |
water | 水 | 42 | 213 |
photocatalysis | 光催化 | 33 | 173 |
carbon nitride | 氮化碳 | 26 | 143 |
graphitic carbon nitride | 石墨相氮化碳 | 26 | 143 |
hydrogen evolution | 放氢 | 26 | 135 |
CO2 reduction | CO2还原 | 21 | 100 |
reduction | 还原 | 21 | 100 |
visible-light | 可见光 | 20 | 96 |
hydrogen-production | 产氢 | 16 | 67 |
nanosheets | 纳米片层 | 14 | 84 |
z-scheme | z型电子传递链 | 12 | 65 |
TiO2 | 二氧化钛 | 12 | 62 |
water oxidation | 水氧化 | 12 | 61 |
charge separation | 电荷分离 | 11 | 47 |
visible-light irradiation | 可见光照射 | 11 | 46 |
metal-organic frameworks | 金属-有机物框架 | 10 | 53 |
highly efficienct | 高效的 | 10 | 51 |
water splitting | 水裂解 | 10 | 50 |
g-C3N4 | 石墨相氮化碳 | 9 | 56 |
oxidation | 氧化 | 9 | 44 |
reduced graphene oxide | 还原氧化石墨烯 | 9 | 40 |
anatase TiO2 | 锐钛矿二氧化钛 | 8 | 39 |
catalyst | 催化剂 | 8 | 39 |
electrochemical reduction | 电化学还原 | 8 | 31 |
graphene | 石墨烯 | 7 | 43 |
graphene oxide | 氧化石墨烯 | 7 | 43 |
photocatalytic CO2 reduction | 光催化CO2还原 | 7 | 41 |
solar fuels | 太阳能燃料 | 7 | 38 |
electron-transfer | 电子传递 | 7 | 31 |
关键词 | 中文翻译 | 共现 频率 | 关联 强度 |
---|---|---|---|
artifical photosynthesis | 人工光合 | 71 | 320 |
water | 水 | 42 | 213 |
photocatalysis | 光催化 | 33 | 173 |
carbon nitride | 氮化碳 | 26 | 143 |
graphitic carbon nitride | 石墨相氮化碳 | 26 | 143 |
hydrogen evolution | 放氢 | 26 | 135 |
CO2 reduction | CO2还原 | 21 | 100 |
reduction | 还原 | 21 | 100 |
visible-light | 可见光 | 20 | 96 |
hydrogen-production | 产氢 | 16 | 67 |
nanosheets | 纳米片层 | 14 | 84 |
z-scheme | z型电子传递链 | 12 | 65 |
TiO2 | 二氧化钛 | 12 | 62 |
water oxidation | 水氧化 | 12 | 61 |
charge separation | 电荷分离 | 11 | 47 |
visible-light irradiation | 可见光照射 | 11 | 46 |
metal-organic frameworks | 金属-有机物框架 | 10 | 53 |
highly efficienct | 高效的 | 10 | 51 |
water splitting | 水裂解 | 10 | 50 |
g-C3N4 | 石墨相氮化碳 | 9 | 56 |
oxidation | 氧化 | 9 | 44 |
reduced graphene oxide | 还原氧化石墨烯 | 9 | 40 |
anatase TiO2 | 锐钛矿二氧化钛 | 8 | 39 |
catalyst | 催化剂 | 8 | 39 |
electrochemical reduction | 电化学还原 | 8 | 31 |
graphene | 石墨烯 | 7 | 43 |
graphene oxide | 氧化石墨烯 | 7 | 43 |
photocatalytic CO2 reduction | 光催化CO2还原 | 7 | 41 |
solar fuels | 太阳能燃料 | 7 | 38 |
electron-transfer | 电子传递 | 7 | 31 |
[1] |
NICOLAISEN J. Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics[J]. Journal of the American Society for Information Science and Technology, 2010,61(1):205-207.
doi: 10.1002/asi.v61:1 URL |
[2] |
ZHANG W, XU X L, MING C H, et al. Surviving in the Dispute: A Bibliometric Analysis of Global GMF-related Research, 1995—2014[J]. Scientometrics, 2016,109(1):359-375.
doi: 10.1007/s11192-016-1995-1 URL |
[3] |
ZHENG T L, WANG J, WANG Q H, et al. A Bibliometric Analysis of Micro/nano-bubble Related Research: Current Trends, Present Application, and Future Prospects[J]. Scientometrics, 2016,109(1):53-71.
doi: 10.1007/s11192-016-2004-4 URL |
[4] | 李晓曼, 张扬, 徐倩, 等. 基于文献计量的植物表型组学研究进展分析[J]. 农业大数据学报, 2019,1(2):64-75. |
[5] | 徐志周, 王茂丽, 张敏瑜, 等. 基于SCI收录的植物菌根信号文献计量分析[J]. 浙江农业科学, 2019,60(1):167-171. |
[6] | 王瑞. 基于文献计量分析的小麦科研实力国际比较研究[D]. 合肥: 安徽农业大学, 2017. |
[7] |
FRIEDLINGSTEIN P, COX P M, BETTS R A. Climate-carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison[J]. Journal of Climate, 2006,19:3337-3353.
doi: 10.1175/JCLI3800.1 URL |
[8] |
HUNTINGFORD C, ZELAZOWSKI P, GALBRAITH D, et al. Simulated Resilience of Tropical Rainforests to CO2-induced Climate Change[J]. Nature Geoscience, 2013,6:268-273.
doi: 10.1038/NGEO1741 URL |
[9] | FROMME P, GROTJOHANN I. Overview of Photosynthesis [M]. In: Fromme P. Photosynthetic Protein Complexes. WILEY-VHC Verlag GmbH & Co.KGaA, Weinheim, 2008,2. |
[10] | CIAIS P, SABINE C, BALA G, et al. Carbon and other biogeochemical cycles[C]//TIGNOR M, ALLEN S K, BOSCHUNG J, et al.Climate Change 2013: the Physical Science Basis. Contribution of Working GroupI to the Fifth Assessment Report of the Intergovernamental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 465-570. |
[11] |
DUSENGE M E, DUARTE A G, WAY D A. Plant Carbon Metabolism and Climate Change: Elevated CO2 and Temperature Impacts on Photosynjournal, Photorespiration and Respiration[J]. New phytologist, 2019,221:32-49.
doi: 10.1111/nph.15283 URL |
[12] | FICKLIN D L, NOVICK K A. Historic and Projected Changes in Vapor Pressure Deficit Suggest a Continental-scale Drying of the United States Atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2017,122:2061-2079. |
[13] | 车明亮, 陈报章, 王瑛, 等. 全球植被动力学模型研究综述[J]. 应用生态学报, 2014,25(1):263-271. |
[14] |
KIRSCHBAUM M U F. Direct and Indirect Climate Change Effects on Photosynjournal and Transpiration[J]. Plant Biology, 2004: 242-253.
doi: 10.1055/s-2004-820883 URL pmid: 15143433 |
[15] |
LEAKEY A D B, AINSWORTH E A, BERNACCHI C J, et al. Elevated CO2 Effects on Plant Carbon, Nitrogen, and Water Relations: Six Important Lessons from FACE[J]. Journal of Experimental Botany, 2009,60:2859-2876.
doi: 10.1093/jxb/erp096 URL pmid: 19401412 |
[16] | ZHU P, ZHUANG Q, CIAIS P, et al. Elevated Atmospheric CO2 Negatively Impacts Photosynjournal through Radiative Forcing and Physiology-mediated Climate Feedback[J]. Geophysical Research Letters, 2017,44:1956-1963. |
[17] | MATHUR S, AARAWAL D, JAJOO A. Photosynjournal: Response to High Temperature Stress[J]. Journal of Photochemistry and Photobiology B: Biology, 2014,137:116-126. |
[18] | BERRY J A, BJÖRKMAN O. Photosynthetic Response and Adaptation to Temperature in Higher Plants[J]. Annual Review of Plant Physiology, 1980,31:491-543. |
[19] | EFEOGLU B, TERZIOGLU S. Photosynthetic Responses of Two Wheat Varieties to High Temperature[J]. Eurasian Journal of Biosciences, 2009,3:97-106. |
[20] |
CHAVES M M, FLEXAS J, PINHEIRO C. Photosynjournal under Drought and Salt Stress: Regulation Mechanisms from Whole Plant to Cell[J]. Annals of Botany, 2009,103:551-560.
doi: 10.1093/aob/mcn125 URL pmid: 18662937 |
[21] | GAN P, LIU F, LI R B, et al. Chloroplasts—Beyond Energy Capture and Carbon Fixation: Tuning of Photosynjournal in Response to Chilling Stress[J]. International Journal of Molecular Sciences, 2019,20:5046. |
[22] |
DOGUTAN D K, NOCERA D G. Artificial Photosynjournal at Efficiencies Greatly Exceeding That of Natural Photosynjournal[J]. Accounts of Chemical Research, 2019,52(11):3143-3148.
doi: 10.1021/acs.accounts.9b00380 URL pmid: 31593438 |
[23] | YU H J, SHI R, ZHAO Y X, et al. Alkali-Assisted Synjournal of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution[J]. Advanced Materials, 2017,29(16):1-7. |
[24] | 第一届亚洲-大洋洲光合作用国际会议(AOICP2018)会议通知[EB/OL]. [2020-12-13]. http://lab.ihb.cas.cn/xsjl/201807/t20180704_415130.html. |
[25] | GRC. Photosynthesis. Gordon Research Conference[EB/OL]. [2020-12-13]. https://www.grc.org/photosynthesis-conference/2019. |
[26] | International Congress on Photosynthesis Research 2022[EB/OL]. [2020-12-13]. https://www.photosynthesis-research.org/ispr-news/asia-oceania/2019/international-congress-on-photosynthesis-research-2020. |
[1] | 华道阳, 胡妮. 基于SDL Multiterm的航空科技术语管理[J]. 中国科技术语, 2024, 26(2): 43-48. |
[2] | 史金鹏, 王海, 杜振雷. 基于文献计量的自动驾驶名词体系构建方法[J]. 中国科技术语, 2023, 25(2): 32-43. |
[3] | 孙晨霞, 施羽暇. 近年来大数据技术前沿与热点研究——基于2015—2021年VOSviewer相关文献的高频术语可视化分析[J]. 中国科技术语, 2023, 25(1): 88-96. |
[4] | 郑安文. 科技术语翻译中的理据构建策略[J]. 中国科技术语, 2022, 24(4): 19-24. |
[5] | 匡耀求, 肖子茜, 谢梦仪. 术语Carbon Storage汉译探讨[J]. 中国科技术语, 2022, 24(4): 86-95. |
[6] | 梁琳, 周敏康. 西班牙语专业本科生科技术语翻译能力调查分析[J]. 中国科技术语, 2021, 23(4): 23-30. |
[7] | 赵颂歌, 张浩, 常宝宝. 基于自注意力机制的科技术语自动提取技术研究[J]. 中国科技术语, 2021, 23(2): 20-26. |
[8] | 魏星, 王小辉, 魏亮, 杜振雷. 基于规范科技术语数据库的科技术语多音字研究与读音推荐[J]. 中国科技术语, 2020, 22(6): 25-29. |
[9] | 林清华. 科技期刊中常见科技术语规范表达[J]. 中国科技术语, 2020, 22(6): 86-87. |
[10] | 曾江霞. 多模态大数据语境下科技术语翻译标准分析——以新冠肺炎和新冠病毒术语翻译为例[J]. 中国科技术语, 2020, 22(5): 33-41. |
[11] | 王烟朦, 许明武. 《天工开物》中信息型科技术语英译策略对比分析[J]. 中国科技术语, 2020, 22(5): 46-51. |
[12] | 顾英利. 专名翻译工作实务——兼谈科技名词术语的查证[J]. 中国科技术语, 2020, 22(5): 72-76. |
[13] | 汪美华. 地质学科技期刊中四组常见词使用辨析[J]. 中国科技术语, 2020, 22(3): 66-70. |
[14] | 余方, 沈敏. 假体在患者体内“生存”还是“存留”?[J]. 中国科技术语, 2019, 21(6): 71-74. |
[15] | 黎东良, 刘淑杰, 王彩芹. 中国科技术语里经由日语进入汉语的德语外来词汇研究[J]. 中国科技术语, 2019, 21(5): 22-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||