中国科技术语 ›› 2025, Vol. 27 ›› Issue (5): 120-122.doi: 10.12339/j.issn.1673-8578.2025.05.027

• 数据技术 • 上一篇    下一篇

人工智能背景下英语术语自动识别与翻译优化研究

李依霏()   

  1. 西安医学院外国语学院, 陕西西安 710021
  • 收稿日期:2025-05-12 出版日期:2025-09-01 发布日期:2025-09-01
  • 作者简介:

    李依霏(1997—),女,硕士,西安医学院外国语学院助教,研究方向为医学英语翻译。通信方式:

  • 基金资助:
    陕西省外语专项课题研究项目“新型外语人才‘讲好中国故事’跨文化传播能力培养研究”(2023HZ0924); 陕西省“十四五”教育科学规划2022年度课题“陕西省医学院校大学英语课程思政一体化建设研究”(SGH22Y1509); 西安医学院教师教育改革与教师发展研究项目“人工智能时代高校外语教师转型与提升研究”(2023JFY-30)

Research on Automatic Recognition and Translation Optimization of English Terminology under the Background of Artificial Intelligence

LI Yifei()   

  • Received:2025-05-12 Online:2025-09-01 Published:2025-09-01

摘要:

随着人工智能技术的迅猛发展,传统英语术语识别与翻译手段面临诸多挑战,如处理效率低、术语歧义多、上下文适应性差等问题。在自然语言处理与深度学习模型广泛应用的背景下,英语术语自动识别与翻译优化迎来了技术革新的新机遇。通过引入预训练语言模型(如BERT、GPT等),可显著提升术语识别的准确性、领域适配性及翻译一致性。文章系统梳理了当前人工智能在术语识别与翻译中的应用路径,归纳其主要优势与典型场景,分析关键技术瓶颈,并提出从算法优化、数据融合到人机协同的多维改进策略,旨在为专业语言服务智能化提供理论支撑与实践路径。

关键词: 人工智能, 英语术语, 自动识别, 翻译, 优化措施

Abstract:

With the rapid development of artificial intelligence technology,traditional English terminology recognition and translation methods face many challenges,such as low processing efficiency,frequent terminology ambiguity,and poor contextual adaptability.In the context of the widespread application of natural language processing and deep learning models,automatic recognitionand translation optimization of English terminology have ushered in new opportunities for technological innovation.By introducing pre trained language models such as BERT,GPT,etc.,the accuracy,domain adaptation,and translation consistency of term recognition can be significantly improved.This article systematically reviews the current application path of artificial intelligence in terminology recognition and translation,summarizes its main advantages and typical scenarios,analyzes key technical bottlenecks,and proposes multidimensional improvement strategies from algorithm optimization,data fusion to human-machine collaboration,aiming to provide theoretical support and practical paths for the intelligentization of professional language services.

Key words: artificial intelligence, English terminology, automatic recognition, translation, optimization measures